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Abstract

This paper studies the dynamic stability of a pretwisted cantilever beam spinning along its longitudinal
axis and subjected to an axial random force at the free end. The axial force is assumed as the sum of a
constant force and a random process with a zero mean. Due to this axial force, the beam may experience
parametric random instability. In this work, the finite element method is first applied to yield discretized
system equations. The stochastic averaging method is then adopted to obtain Ito’s equations for the
response amplitudes of the system. Finally the mean-square stability criterion is utilized to determine the
stability condition of the system. Numerical results show that the stability boundary of the system
converges as the first three modes are taken into calculation. Before the convergence is reached, the stability
condition predicted is not conservative enough.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

A vast majority of various products in the world have a variety of holes. Therefore, holemaking
is one of the most frequently encountered operations in manufacturing. The common method of
generating a hole in materials is by drilling. In a drilling process, the cutting parameters, such as
the drill geometry, rotational speed, feed, thrust force, etc., will affect wear and breakage of the
drill and accuracy of the hole. Consequently, dynamic behavior of drills has been an important
research topic.
The twist drill has a fluted helix angle and two orthogonal principal axes with different cross-

sectional area of moments and can be regarded as a pretwisted beam. There exist already a lot of

ARTICLE IN PRESS

*Corresponding author. Tel.: +886-2-2737-6444; fax: +886-2-2737-6460.

E-mail address: thyoung@mail.ntust.edu.tw (T.H. Young).

0022-460X/03/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0022-460X(02)01490-6



references pertaining to the vibration of pretwisted beams. Most of the works [1–5] concerned
the vibration of turbine blades and propellers, which are treated as pretwisted, tapered canti-
lever beams rotating about the axis perpendicular to the longitudinal axis of the beam, and
dealt primarily with the determination of natural frequencies and mode shapes of pretwisted
beams.
When dealing with dynamic behavior of helical fluted cutters, axial forces have to be included.

Magrab and Gilsinn [6] calculated the natural frequencies of a clamped–clamped pretwisted beam
under a static axial force by the Galerkin method. Tekinalp and Ulsoy [7,8] investigated the free
vibration of drill bits. In these two papers, the fluted cutters are considered as pretwisted beams,
and the cutting parameters, such as the pretwist angle, cross-sectional geometry, axial force,
rotating speed and feed rate of cutters, are included in the finite element equations. An extensive
study of the elastic stability of spinning pretwisted beams subjected to conservative axial forces
was presented by Liao and Dang [9].
The axial force considered in the above references is constant. However, the axial force

fluctuates within a small range of variation under external disturbances during service. Therefore,
it would be more general and realistic to consider a time-dependent axial force for helical fluted
cutters. Liao and Huang [10] analyzed the parametric stability of spinning pretwisted beams under
periodic axial forces. Summed-type resonances are shown to exist due to this time-varying axial
force. Actually, the time-dependent axial force is often of random nature. Consequently, this work
extends Liao and Huang’s efforts further to study the dynamic stability of spinning pretwisted
beams subjected to axial random forces.

2. Equations of motion

Fig. 1. shows a schematic view of a pretwisted, cantilever beam of length L spinning along
its longitudinal axis with a spin rate O0 and subjected to an axial force P at its free end. In
this figure, (X, Y, Z) is a fixed co-ordinate system, while (x, y, z) is a rotating co-ordinate
system attached to the beam with the x-axis aligned with the X-axis. The (x0, y0, z0) co-
ordinate system rotates along the longitudinal axis of the beam with a total pretwist angle g such
that the y0- and z0-axes coincide with the principal axes of the pretwisted beam at every cross-
section.
If every cross-section of the beam is symmetric with respect to two principal axes of

inertia, torsional coupling will not be presented, and only flexural bending is about to occur.
In addition, flexural bending takes place simultaneously in two mutually perpendicular
planes with unequal flexural rigidities in these two principal axes, and coupling arises due to
the presence of the pretwist angle [3]. Thus, the displacement field in the beam can be
written as

uxðx; y; z; tÞ ¼ � y
@v

@x
� z

@w

@x
;

uyðx; y; z; tÞ ¼ vðx; tÞ;

uzðx; y; z; tÞ ¼wðx; tÞ; ð1Þ
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where v and w are the displacement components of the neutral axis of the beam along the y- and z-
axes, respectively. The strain energy is found to be

U ¼
1

2

Z L

0

E Izz

@2v

@x2

� �2

þ2Iyz

@2v

@x2

� �
@2w

@x2

� �
þ Iyy

@2w

@x2

� �2
" #

dx; ð2Þ

where E is Young’s modulus of the beam; Iyy, Izz and Iyz are the moments and product of area of
the beam, respectively. Iyy, Izz and Iyz are related to the moments of area about two principal axes
Iy0y0 ; and Iz0z0 at every cross-section by

Iyy ¼ Iy0y0 cos
2 ðgx=LÞ þ Iz0z0 sin

2 ðgx=LÞ;

Izz ¼ Iz0z0 cos
2 ðgx=LÞ þ Iy0y0 sin

2 ðgx=LÞ;

Iyz ¼ 1
2
ðIz0z0 � Iy0y0 Þsin 2ðgx=LÞ: ð3Þ

The work done by the axial force applied at the free end of the beam is given by

Wk ¼ �
1

2

Z L

0

P
@v

@x

� �2

þ
@w

@x

� �2
" #

dx: ð4Þ
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Fig. 1. A schematic view of a spinning pretwisted, cantilever beam subjected to an axial force at its free end.
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The velocity components of a typical point in the beam can be expressed as

Vx ¼ � y
@2v

@t@x
� z

@2w

@t@x
;

Vy ¼
@v

@t
� O0ðw þ zÞ;

Vz ¼
@w

@t
þ O0ðv þ yÞ: ð5Þ

Therefore, the kinetic energy due to bending vibration becomes

T ¼
1

2

Z L

0

r Izz
@2v

@t@x

� �2

þO2
0

" #
þ 2Iyz

@2v

@t@x

� �
@2w

@t@x

� �
þ Iyy

@2w

@t@x

� �2

þO2
0

" #(

þA
@v

@t
� O0w

� �2

þ
@w

@t
þ O0v

� �2
" #)

dx; ð6Þ

where r and A are the mass density and the cross-sectional area of the beam, respectively. If the
damping in the beam is of viscous type, by extended Hamilton’s principle, the Lagrange equations
of motion and the associated boundary conditions can be derived as follows:
Equations of motion:

r A
@2v

@t2
� 2O0

@w

@t
� O2

0v

� �
�

@

@x
Izz

@3v

@t2@x
þ Iyz

@3w

@t2@x

� �� 	
þ c

@v

@t

þ E
@2

@x2
Izz

@2v

@x2
þ Iyz

@2w

@x2

� �
þ PðtÞ

@2v

@x2
¼ 0;

r A
@2w

@t2
þ 2O0

@v

@t
� O2

0w

� �
�

@

@x
Iyz

@3v

@t2@x
þ Iyy

@3w

@t2@x

� �� 	
þ c

@w

@t

þ E
@2

@x2
Iyz

@2v

@x2
þ Iyy

@2w

@x2

� �
þ PðtÞ

@2w

@x2
¼ 0; ð7Þ

where c is the viscous damping coefficient of the beam.
Boundary conditions:

at x ¼ 0 : v ¼ w ¼
@v

@x
¼

@w

@x
¼ 0;

at x ¼ L : E Izz
@2v

@x2
þ Iyz

@2w

@x2

� �
¼ 0; E Iyz

@2v

@x2
þ Iyy

@2w

@x2

� �
¼ 0;

E
@

@x
Izz

@2v

@x2
þ Iyz

@2w

@x2

� �
þ P

@v

@x
� r Izz

@3v

@t2@x
þ Iyz

@3w

@t2@x

� �
¼ 0;

E
@

@x
Iyz

@2v

@x2
þ Iyy

@2w

@x2

� �
þ P

@w

@x
� r Iyz

@3v

@t2@x
þ Iyy

@3w

@t2@x

� �
¼ 0: ð8Þ
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Eq. (7) is a set of partial differential equations with time-dependent coefficients and cannot be
solved directly.

3. Finite element formulation

Initially, dependence on the spatial co-ordinates must be eliminated first from Eq. (7), yielding a
set of ordinary differential equations in time which can be solved for system response. Due to the
complexity in geometry, the eigensolutions of a pretwisted beam cannot be found exactly [2].
Consequently, an approximate method has to be used to separate the spatial co-ordinate from the
temporal variable. In this work, the finite element method is adopted to do this job. Since the two
equations of motion are coupled and include the fourth order derivatives with respect to the
spatial co-ordinate x, the nodal variables should contain two nodal displacements (v, w) and two
nodal slopes (@v/@x, @w/@x). For a two-noded element, the displacement field within the element is
interpolated by

vðx; tÞ ¼
X4
j¼1

djðtÞcjðxÞ;

wðx; tÞ ¼
X4
j¼1

ejðtÞcjðxÞ; ð9Þ

where dj and ej are nodal parameters containing (v, @v/@x) and (w, @w/@x) at each node,
respectively; cj(x) are the Hermite cubic interpolation functions.
Substituting the displacement field into the equations of motion and going through the

Galerkin procedure yields the finite element model of Eq. (7) for each element:

m2½Me�
.d

.e

( )
þ 2m2O0ð½Ge� þ a½Ce�Þ

’d

’e

( )
þ ð½Ke� þ P	½Qe�Þ

d

e

( )
¼ 0; ð10Þ

where m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAL4=EI0

p
; a=c/2rAO0, P*=PL2/EI0, in which I0 is the moment of area about the z-

axis at the clamped end. fdeg is a column matrix formed by all dj and ej, and a overdot denotes a
differentiation with respect to time t. The element matrices [Me], [Ge], [Ce], [Ke] and [Qe] have the
following forms:

½Me� ¼
½M1� þ ½M2� ½M4�

½M4� ½M1� þ ½M3�

" #
; ½Ge� ¼

½0� �½M1�

½M1� ½0�

" #
;

½Ce� ¼
½M1� ½0�

½0� ½M1�

" #
; ½Ke� ¼

½K1� � m2O2
0½M1� ½K3�

½K3� ½K2� � m2O2
0½M1�

" #
;

½Qe� ¼
½K4� ½0�

½0� ½K4�

" #
;
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in which the matrices [M1], [M2], [M3], [M4], [K1], [K2], [K3] and [K4] are all symmetric and are
defined as follows:

M1
ij ¼

Z xeþ1

xe

1

L
cicj dx; M2

ij ¼
Z xeþ1

xe

Izz

AL

@ci

@x

@cj

@x
dx;

M3
ij ¼

Z xeþ1

xe

Iyy

AL

@ci

@x

@cj

@x
dx; M4

ij ¼
Z xeþ1

xe

Iyz

AL

@ci

@x

@cj

@x
dx;

K1
ij ¼

Z xeþ1

xe

Izz

I0
L3@

2ci

@x2

@2cj

@x2
dx; K2

ij ¼
Z xeþ1

xe

Iyy

I0
L3@

2ci

@x2

@2cj

@x2
dx;

K3
ij ¼

Z xeþ1

xe

Iyz

I0
L3@

2ci

@x2

@2cj

@x2
dx K4

ij ¼ �
Z xeþ1

xe

L
@ci

@x

@cj

@x
dx;

where M1
ij ; M2

ij ; M3
ij ; M4

ij ; K1
ij ; K2

ij ; K3
ij and K4

ij are the i–jth entries of [M1], [M2], [M3], [M4], [K1],
[K2], [K3] and [K4], respectively, and the integrations are performed over an element. Note that the
matrices [Me], [C e], [K e] and [Qe] are symmetric, while [Ge] is skew-symmetric. After assembling
the element equations and non-dimensionalizing the equation by introducing a non-dimensional
temporal variable t=t/m, the discretized equation for the spinning pretwisted beam can be written
as

½M�D00 þ 2mO0ð½G� þ a½C�ÞD0 þ ð½K� þ P	½Q�ÞD ¼ 0; ð11Þ

where [M], [G], [C], [K] and [Q] are the mass, gyroscopic, damping, elastic stiffness and geometric
stiffness matrices, respectively. D is a column matrix formed by all the nodal parameters, and a
prime denotes a differentiation with respect to t.
Eq. (11) is a set of second order ordinary differential equations with variable coefficients. To

improve the solvability of Eq. (11), a modal analysis suitable for gyroscopic systems is applied to
uncouple the undamped, autonomous terms in the system equation. If the axial force can be
expressed as the sum of a constant force P0 and a weakly stationary random process with a zero
mean P1(t), i.e., P*(t)=P0+P1(t). Eq. (11) can be rewritten into a set of first order differential
equations of the form

½M� ½0�

½0� ½Kt�

" #
p0 þ

2mO0½G� ½Kt�

�½Kt� ½0�

" #
p ¼ � 2a

mO0½C� ½0�

½0� ½0�

" #
þ P1ðtÞ

½0� ½Q�

½0� ½0�

" # !
p; ð12Þ

where [Kt]=[K]+P0[Q] and p ¼ fD0

D g The eigenvalues of the corresponding undamped,
autonomous system of Eq. (12) appear in complex conjugate pairs, i.e., ln=7ion, n=1, 2,y,
N, where on are the non-dimensionalized natural frequencies of the pretwisted beam, and N is the
total degrees of freedom of the discretized system. The eigenvectors of the corresponding
undamped, autonomous system of Eq. (12) also appear in complex conjugate pairs, i.e.,
xn=yn+izn, %xn ¼ yn � izn; where yn and zn are the real and imaginary parts of the eigenvector xn,
respectively.
In order to save computation efforts, a modal truncation method is utilized. Introduce a linear

transformation p=[P]z, where [P] is the matrix formed by the real and imaginary parts of the first
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J normalized eigenvectors of the system. Substituting this transformation into Eq. (12),
premultiplying the transpose of [P] and using the orthogonality of eigenvectors yields the
following partially uncoupled equation:

z0 þ ½L�z ¼ �2a½C	�z�
P1ðtÞ

P0
½Q	�z; ð13Þ

where [L] is a block diagonal matrix of the form

½L� ¼ block-diag:
0 �on

on 0

" #
; ½C	� ¼ ½P�T

mO0½C� ½0�

½0� ½0�

" #
½P�; ½Q	� ¼ P0½P�T

½0� ½Q�

½0� ½0�

" #
½P�:

Again [C*] is symmetric due to the property of the congruent transformation. The terms on the
left-hand side of Eq. (13) are uncoupled in a blockwise sense; however, those on the right-hand
side of the equation are still coupled together. To match the form of the matrix [L], the matrices
on the right-hand side are partitioned into J2 blocks of 2� 2 matrices. Hence, Eq. (13) can be
rewritten into the following form:

x0n � onZn ¼ �2a
XJ

j¼1

ðc11nj xj þ c12nj ZjÞ �
P1ðtÞ

P0

XJ

j¼1

ðq11nj xj þ q12nj ZjÞ;

Z0n þ onxn ¼ �2a
XJ

j¼1

ðc21nj xj þ c22nj ZjÞ �
P1ðtÞ

P0

XJ

j¼1

ðq21nj xj þ q22nj ZjÞ;

n ¼ 1; 2;y; J; ð14Þ

where xn and Zn are the (2n–1)th and 2nth entries of z; cik
nj and qik

nj are the i–kth entries of the n–jth
blocks of [C*] and [Q*], respectively.

4. Stochastic averaging method

The solutions of Eq. (14) are assumed to be of the form

xn ¼ an cosFn; Zn ¼ �an sinFn; n ¼ 1; 2;y; J; ð15Þ

where Fn=ont+fn, in which an and fn are amplitudes and phase angles of the system response,
respectively. Substituting Eq. (15) into Eq. (14) yields

a0n ¼ fanða; /Þ þ
P1ðtÞ

P0
ganða; /Þ;

f0
n ¼ ffnða; /Þ þ

P1ðtÞ
P0

gfnða; /Þ; n ¼ 1; 2;y; J;

ð16Þ
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where

fanða; /Þ ¼ a
XJ

j¼1

ð�c11nj cosFn cosFj þ c12nj cosFn sinFj þ c21nj sinFn cosFj � c22nj sinFn sinFjÞaj;

ganða; /Þ ¼
XJ

j¼1

ð�q11nj cosFn cosFj þ q12nj cosFn sinFj þ q21nj sinFn cosFj � q22nj sinFn sinFjÞaj;

ffnða; /Þ ¼ a
XJ

j¼1

ðc11nj sinFn cosFj � c12nj sinFn sinFj þ c21nj cosFn cosFj � c22nj cosFn sinFjÞ
aj

an

;

gfnða; /Þ ¼
XJ

j¼1

ðq11nj sinFn cosFj � q12nj sinFn sinFj þ q21nj cosFn cosFj � q22nj cosFn sinFjÞ
aj

an

;

where a and / are column matrices formed by all an and fn, respectively.
Assume that the damping ratio a and the random excitation P1(t) are small in some sense such

that a is of order e, and P1(t)/P0 is of order e
1/2, where e is a small parameter. Hence, the stochastic

averaging procedure can be applied to Eq. (16), and fa/g can be uniformly approximated in the
weak sense by a Markov vector [11]

dan ¼mn dt þ
X2J

r¼1

snr dBr;

dfn ¼mðnþJÞ dt þ
X2J

r¼1

sðnþJÞr dBr; n ¼ 1; 2; y; J; ð17Þ

where Br are independent unit Wiener processes; mj are drift coefficients, and sjk are elements of
the diffusion matrix [s] with

mn ¼ fanða; /; tÞ þ
Z 0

�N

gajða; /; tþ t	Þ
@

@aj

ganða; /; tÞ
�

;

�

þ gfjða; /; tþ t	Þ
@

@fj

ganða; /; tÞ

)
Rðt	Þ dt	

+
t

;

mðnþJÞ ¼ ffnða; /; tÞ þ
Z 0

�N

gajða; /; tþ t	Þ
@

@aj

gfnða; /; tÞ
��

þgfjða; /; tþ t	Þ
@

@fj

gfnða; /; tÞ

)
Rðt	Þ dt	

+
t

;

ð½s�½s�TÞjk ¼
Z

N

�N

gajða; /; tÞgakða; /; tþ t	ÞRðt	Þ dt	
� �

t
;

ð½s�½s�TÞjðkþJÞ

Z
N

�N

gajða; /; tÞgfkða; /; tþ t	ÞRðt	Þ dt	
� �

t
;
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ð½s�½s�TÞðjþJÞk

Z
N

�N

gfjða; /; tÞgakða; /; tþ t	ÞRðt	Þ dt	
� �

t
;

ð½s�½s�TÞðjþJÞðkþJÞ ¼
Z

N

�N

gfjða; /; tÞgfkða; /; tþ t	ÞRðt	Þ dt	
� �

t

j; k ¼ 1; 2; y; J;

where ([s][s]T)jk is the j–kth entry of the product of [s] and its transpose; R(t) is the
autocorrelation function of P1(t)/P0, and /[  ]St denotes a time-averaging operation with respect
to t,

½�h it¼ lim
T-N

1

2T

Z T

�T

½� dt:

Going through the integrations, these coefficients can be obtained. Detailed expressions of these
coefficients are given in the Appendix.
The Ito differential equations for a2n can be acquired by Ito’s differential rule as

da2n ¼ ½2mnan þ ð½s�½s�TÞnn� dtþ 2an

X2J

r¼1

snr dBr; n ¼ 1; 2; y; J: ð18Þ

Taking the expectation on both sides of the equation yields

d

dt
E½a2n� ¼ � 2aðc11nn þ c22nnÞE½a2n�

þ 1
4

XJ

j¼1

fðq11nj q11jn þ q22nj q22jn þ q12nj q21jn þ q21nj q12jn Þ½Sðon � ojÞ þ Sðon þ ojÞ�E½a2n�

þ ðq11nj q22jn þ q22nj q11jn � q12nj q12jn � q21nj q21jn Þ½Sðon � ojÞ � Sðon þ ojÞ�E½a2n�

þ ðq11nj q11nj þ q22nj q22nj þ q12nj q12nj þ q21nj q21nj Þ½Sðon � ojÞ þ Sðon þ ojÞ�E½a2j �

þ 2ðq11nj q22nj � q12nj q21nj Þ½Sðon � ojÞ � Sðon þ ojÞ�E½a2j �

þ ðq21nj q11jn þ q22nj q21jn � q11nj q12jn � q12nj q22jn Þ½Cðon � ojÞ þCðon þ ojÞ�E½a2n�

þ ðq12nj q11jn þ q22nj q12jn � q11nj q21jn � q21nj q22jn Þ½Cðon þ ojÞ �Cðon � ojÞ�E½a2n�g

þ 1
4
ðq12nnq22nn þ q21nnq22nn � q11nnq12nn � q11nnq21nnÞCð2onÞ�E½a2n�

n ¼ 1; 2; y; J; ð19Þ

where S(o) and C(o) are defined in the Appendix. Note that in the above equation, q11nn ¼ �q22nn is
observed if the matrix [Q] is symmetric. Eq. (19) can be rewritten into a matrix form:

d

dt
d ¼ ½D�d; ð20Þ

where d ¼ fE½a21�; E½a22�; y; E½a2J �g
T: When all the real parts of eigenvalues of the coefficient

matrix [D] are negative, the mean-square response of the system decays with time, and the system
is stable in the mean-square sense. When one of the real parts of eigenvalues of the coefficient
matrix [D] is positive, the mean-square response of that mode enlarges with time, and the system is
unstable in the mean-square sense. Therefore, the mean-square stability boundary of the system
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corresponds to the condition such that one of the real parts of eigenvalues of the coefficient matrix
[D] becomes zero.

5. Numerical results and discussions

Before formally presenting the numerical results for the stability analysis, convergence studies
of the finite element model and the modal truncation method have to be conducted first.
According to the suggestion by the previous study [9], 25 uniform elements are used to model the
spinning pretwisted beam in this work. As an application of the general solution, the random
process P1(t)/P0 is assumed as a Gaussian white noise with a spectral density S here for simplicity.
Therefore, S(0)=S(2on)=S(oj7ok)=S, C(2on)=C(oj7ok)=0. However, the numerical results
for other random processes can also be produced easily. In addition, all the numerical results in
this work are presented in non-dimensional forms: therefore, O0 in this section represents the non-
dimensional expression O0/o0, where o0 is the fundamental natural frequency of the free, non-
spinning prismatic beam, i.e., o0 ¼ 3:5156

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI0=rAL4

p
:

Fig. 2 presents the effect of the number of modes used in the modal truncation method on the
mean-square stability boundary of a spinning pretwisted beam subjected to an axial random
force. The mean-square stability boundary on the S–a plane is a straight line originated from the
origin because all the entries of the coefficient matrix [D] in Eq. (20) are functions of the ratio S/a
for a Gaussian white noise P1(t)/P0. The unstable region lies above the stability boundary. As the
number of modes J increases from 1, the stability boundary rotates downwards about the origin,
leaving a larger unstable region. The stability boundaries for J equal to 3 and 4 almost coincide
with each other. A further increase in J cannot make the stability boundary rotate downwards any
further. Therefore, with only the first three modes of the beam used in the modal truncation
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method, the mean-square stability boundary of the system converges quickly. Before the
convergence is reached, the stability condition predicted is not conservative enough. In addition,
the effect of the viscous damping is stabilizing, while the effect of the random part of the axial
force is destabilizing.
Parametric studies of the free vibration of the spinning pretwisted beam should be carried out

before the systematic investigation of the effects of various parameters on the stability boundary
of the beam. Fig. 3 shows the first three natural frequencies of a spinning pretwisted beam
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subjected to a static axial force under changes of the thickness-to-breadth ratio R=h/b. In this
figure, the cross-sectional area of the beam A=bh remains constant. It is found that the first three
natural frequencies rise as the thickness-to-breadth ratio increases. The effect of the thickness-to-
breadth ratio on the mean-square stability boundary of the system is depicted in Fig. 4. Since the
mean-square stability boundary depends only on the ratio S/a for a Gaussian white noise P1(t)/
P0, the stability boundary is shown on the (S/a)–R plane, and the unstable region lies above the
stability boundary. As the ratio increases from 0.2 to 1.0, the stability boundary drops down very
quickly, leaving a larger unstable region. Consequently, the effect of the thickness-to-breadth
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ratio within this range is destabilizing in this situation though it will raise the lowest few natural
frequencies of the beam.
Fig. 5 illustrates the first three natural frequencies of a spinning pretwisted beam subjected

to a static axial force under changes of the total pretwist angle g. As g increases from 01, the
first natural frequency rises a little bit; the second natural frequency lowers significantly, while
the third one goes up and down. Fig. 6 shows the mean-square stability boundary of the system
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on the (S/a)–g plane. The boundary rises monotonically at different rates as g increases up
to 3601. Hence, the effect of the pretwist angle is stabilizing for a total pretwist angle less
than 3601.
The first three natural frequencies of a spinning pretwisted beam subjected to a static axial force

versus the spin rate O0 is depicted in Fig. 7. As the spin rate increases, the first natural frequency
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decreases; the second natural frequency rises, but the third one is almost unchanged. At
O0=0.233, where the first natural frequency becomes zero, the beam will experience a diver-
gence-type instability, and this value of O0 is called the critical speed of the beam. Fig. 8 illu-
strates the effect of the spin rate of the beam on the mean-square stability of the system.
The boundary falls down as the spin rate increases. Therefore, the effect of the spin rate is
unfavorable to the mean-square stability of the system. Note that the stability boundary touches
the abscissa at O0=0.233, which is the critical speed of the beam under the action of the static
axial load P0, beyond which the system is unstable even if the random part of the axial force
is absent.
Fig. 9 presents the first three natural frequencies of a spinning pretwisted beam under changes

of the static axial force. All the lowest three natural frequencies reduce as the static axial force
increases. At P0=2.32 where the first natural frequency becomes zero, the beam will experience a
divergence-type instability, and this value of P0 is called the buckling load of the spinning beam.
The effect of the average axial force P0 on the mean-square stability of the system is shown in
Fig. 10. The boundary drops down drastically as the average axial force increases. Again the effect
of the average axial force is undesirable to the mean-square stability of the system. Note that the
stability boundary meets the abscissa at P0=2.32, which is the buckling load of the spinning
pretwisted beam, beyond which the system is unstable even though the random part of the axial
force is absent.

6. Conclusions

The dynamic stability of a pretwisted cantilever beam spinning along its longitudinal axis and
subjected to an axial random force at the free end is analyzed in this work. The axial force is
assumed as the sum of a static force and a random process with a zero mean. Due to this axial
random force, the beam may experience parametric random instability. In this work, the mean-
square stability criterion is utilized to determine the stability condition of the system. Numerical
results are given for a Gaussian white noise excitation.
The effects of various system parameters on the mean-square stability boundary of the system

were investigated, and the following conclusions can be drawn:

(1) The mean-square stability boundary of the system converges as the first three modes are taken
into consideration. Before the convergence is reached, the stability condition predicted is not
conservative enough.

(2) The mean-square stability boundary of the system on the S-a plane is a straight line originated
from the origin because the stability boundary depends only on the ratio S/a. The effect of the
viscous damping is favorable, but the effect of the random part of the axial force is
unfavorable.

(3) For the total pretwist angle g less than 3601, its effect is stabilizing in the mean-square sense.
For the thickness-to-breadth ratio R between 0.2 and 1.0, its effect is destabilizing.

(4) The effects of the spin rate and average axial force tend to destabilize the system, and the
mean-square stability boundary will not exist any more once the spin rate (or the average
axial force) exceeds the critical speed (or the buckling load).
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Appendix

mn ¼ � aðc11nn þ c22nnÞan þ 1
16

XJ

r¼1

("
2ðq11nr q11rn þ q22nr q22rn þ q12nr q21rn þ q21nr q12rn Þan þ ðq11nr q11nr ::

þq22nr q22nr þ q12nr q12nr þ q21nr q21nr Þ
a2r
an

	
½Sðon � orÞ þ Sðon þ orÞ� þ

�
2ðq11nr q22rn þ q22nr q11rn :

� q12nr q12rn � q21nr q21rn Þan þ 2ðq11nr q22nr � q12nr q21nr Þ
a2r
an

	
½Sðon � orÞ � Sðon þ orÞ�

þ 2ðq21nr q11rn þ q22nr q21rn � q11nr q12rn � q12nr q22rn Þan

� �
½Cðon � orÞ þCðon þ orÞ�

þ ½2ðq12nr q11rn þ q22nr q12rn � q11nr q21rn � q21nr q22rn Þan�½Cðon þ orÞ �Cðon � orÞ�

)

� 1
16
f2ðq11nnq22nn þ q12nnq21nnÞ½Sð0Þ þ Sð2onÞ�

þ ðq11nnq11nn þ q22nnq22nn � q12nnq12nn � q21nnq21nnÞ½Sð0Þ � Sð2onÞ�

þ 2ðq12nnq22nn þ q21nnq22nn � q11nnq12nn � q11nnq21nnÞCð2onÞgan;

mðnþJÞ ¼ 1
8

XJ

r¼1

fðq11nr q12rn þ q12nr q22rn � q21nr q11rn � q22nr q21rn Þ½Sðon � orÞ þ Sðon þ orÞ�

þ ð�q11nr q21rn þ q12nr q11rn � q21nr q22rn þ q22nr q12rn Þ½Sðon � orÞ � Sðon þ orÞ�

þ ðq11nr q11rn þ q22nr q22rn þ q12nr q21rn þ q21nr q12rn Þ½Cðon � orÞ þCðon þ orÞ�

þ ð�q11nr q22rn þ q12nr q12rn � q22nr q11rn þ q21nr q21rn Þ½Cðon þ orÞ �Cðon � orÞ�g

þ 1
8
f2ðq22nnq21nn � q11nnq12nnÞ½Sð0Þ þ Sð2onÞ� þ 2ðq21nnq11nn � q12nnq22nnÞ½Sð0Þ � Sð2onÞ�

þ ðq12nnq12nn þ q21nnq21nn þ 2q12nnq21nn � q11nnq11nn � q22nnq22nn þ 2q11nnq22nnÞCð2onÞg;

ð½s�½s�TÞjk ¼ 1
8fðq

11
jk q11kj þ q22jk q22kj þ q12jk q21kj þ q21jk q12kj Þ½Sðoj � okÞ þ Sðoj þ okÞ�

þ ðq11jk q22kj þ q22jk q11kj � q12jk q12kj � q21jk q21kj Þ½Sðoj � okÞ � Sðoj þ okÞ�

þ 2ðq11jj q11kk þ q11jj q22kk þ q22jj q11kk þ q22jj q22kkÞSð0Þgajak;

ð½s�½s�TÞjðkþJÞ ¼
1
8
fð�q11jk q21kj þ q22jk q12kj þ q12jk q11kj � q21jk q22kj Þ½Sðoj � okÞ þ Sðoj þ okÞ�

þ ð�q22jk q21kj þ q11jk q12kj � q21jk q11kj þ q12jk q22kj Þ½Sðoj � okÞ � Sðoj þ okÞ�

þ 2ð�q11jj q21kk þ q22jj q12kk � q22jj q21kk þ q11jj q12kkÞSð0Þgaj;

ð½s�½s�TÞðjþJÞk ¼ ð½s�½s�TÞkðjþJÞ;

ð½s�½s�TÞðjþJÞðkþJÞ ¼
1
8
fðq21jk q21kj þ q12jk q12kj � q22jk q11kj � q11jk q22kj Þ½Sðoj � okÞ þ Sðoj þ okÞ�

� ðq21jk q12kj þ q12jk q21kj þ q22jk q22kj þ q11jk q11kj Þ½Sðoj � okÞ � Sðoj þ okÞ�

þ ðq21jj q21kk � q21jj q12kk � q12jj q21kk þ q12jj q12kkÞSð0Þg;
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where SðoÞ ¼ 2
R
N

0 RðtÞ cosot dt and CðoÞ ¼ 2
R
N

0 RðtÞ sinot dt: When j=k,

ð½s�½s�TÞjj ¼
1
8

XJ

r¼1

fðq11jr q11jr þ q22jr q22jr þ q12jr q12jr þ q21jr q21jr Þ½Sðor � ojÞ þ Sðor þ ojÞ�

þ 2ðq11jr q22jr � q12jr q21jr Þ½Sðor � ojÞ � Sðor þ ojÞ�ga2r

þ 1
8
f2ðq11jj q22jj þ q12jj q21jj Þ½Sð0Þ þ Sð2ojÞ�

þ ðq11jj q11jj þ q22jj q22jj � q12jj q12jj � q21jj q21jj Þ½Sð0Þ � Sð2ojÞ�ga2j ;

ð½s�½s�TÞjðjþJÞ ¼
1
8
f2ðq11jj q12jj � q22jj q21jj Þ½Sð0Þ þ Sð2ojÞ�

þ ð�q11jj q21jj þ q22jj q12jj � q12jj q11jj þ q21jj q22jj Þ½Sð0Þ � Sð2ojÞ�gaj

¼ ð½s�½s�TÞðjþJÞj;

ð½s�½s�TÞðjþJÞðjþJÞ ¼
1
8

XJ

r¼1

fðq11jr q11jr þ q22jr q22jr þ q12jr q12jr þ q21jr q21jr Þ½Sðor � ojÞ þ Sðor þ ojÞ�

þ 2ðq12jr q21jr � q11jr q22jr Þ½Sðor � ojÞ � Sðor þ ojÞ�g
ar

aj

� �2

þ 1
8
f2ðq11jj q22jj þ q12jj q21jj Þ½Sð0Þ þ Sð2ojÞ�

þ ð�q11jj q11jj � q22jj q22jj þ q12jj q12jj þ q21jj q21jj Þ½Sð0Þ � Sð2ojÞ�g:
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